“What we cannot create, we do not understand.” - Richard Feynman

Edge AI Lab

Diesimo Lab: An Open Research Lab for Edge Intelligence.

Solution Tree

From research to production-ready real-world Edge AI and Computer Vision solutions for smart industries.

Edge AI

├── End-to-End Edge AI MLOps Stack            
│   ├── Data Acquisition (Sensors: Microphones, Camera, LiDAR ...)
│   ├── Model Design (Efficiency-Aware, NAS ...)       
│   ├── Deployment (Onnxruntime, LiteRT, AIMET, TensorRT, OpenVINO, ...)       
│   ├── Optimization (Compression: Quantization, Prunning, Distillation, Fine-Tuning )                   
│   └── Benchmarking and Profiling (Performance-Accuracy-Power envelope)
├── Hardware-Software Co-design & Optimization
│   ├── Target Platform: Smart Devices: Smartphones, Wearable Devices 
│   │   ├── Smart Devices: Smartphones, Wearable Devices                                                     
│   │   └── Embedded/IoT Devices: MCUs, Raspberry Pi, NVIDIA Jetson Nano 
│   ├── Runtime/inference engine: Onnxruntime, custom inference engines 
│   ├── Energy/Power Consumption (OPS/W): Battery-based devices (W => mW)                                     
│   └── AI Accelerators: Multi-CPUs, GPUs, NPUs
└── Business Impact & Value
    ├── ROI/TOC Modeling: Cloud vs edge inference costs                                                  
    └── Sustainibility Impact: Energy efficiency and long-term operational cost savings

Computer Vision

├── End-to-End Computer Vision Stack            
│   ├── Data Acquisition/Labeling
│   ├── Model Design (Efficiency-aware)        
│   ├── Deployment (Edge Devices, Cloud)        
│   └── Monitoring
└── Computer Vision Applications
    ├── Classification
    ├── Object Detection (2D, 3D)        
    ├── Segmentation (semantic, instance, panoptic)                   
    ├── Multimodality (VLMs: GANs, VAEs, Diffusers ...)        
    └── Motion & Video Analysis: Tracking & Flow

Perception

└── Perception
    ├── Camera Modeling & Calibration (Monocular, Stereo, Fisheye) 
    ├── Sensor Fusion (Camera, LiDAR, RADAR ...)                   
    ├── Depth Perception                                                     
    └── VSLAM (VO) 

Industry: Case Studies

├── Autonomous Systems           
│   ├── Robotics                 # Mobile, Humanoids, Embodied Agents
│   ├── Self-Driving Cars        # ADAS, Autonomous Vehicles
│   └── UAS: Drones, sUAS, UAVs  # Unmanned Aerial Systems
├── Healthcare 
│   └── Medical Imaging 
├── Agriculture   
│   └── Precision Farming
├── Security
│   └── Surveillance
├── Manufacturing 
│   └── Quality Control
├── Retail 
│   └── Consumer Analytics
└── Smart Cities
    └── Urban Planning

Demos: POCS and MVS …

└── Demos: POCs & Minimum Viable Solution (MVS)
    ├── Colab, Jupyter Notebooks                                                      
    ├── Hugging Face Spaces: Gradio, Streamlit, Docker                                                     
    ├── Frontend Web/App UI: V0, Qt                                                      
    └── Realtime App/Model Serving: Flask, FastAPI, WebSocket/WSS  

Need a custom Edge AI solution? Let’s Talk.